The Birman-schwinger Principle in Von Neumann Algebras of Finite Type
نویسنده
چکیده
We introduce a relative index for a pair of dissipative operators in a von Neumann algebra of finite type and prove an analog of the Birman-Schwinger principle in this setting. As an application of this result, revisiting the Birman-Krein formula in the abstract scattering theory, we represent the de la Harpe-Skandalis determinant of the characteristic function of dissipative operators in the algebra in terms of the relative index.
منابع مشابه
Various topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
The James and von Neumann-Jordan type constants and uniform normal structure in Banach spaces
Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this paper, we present some sufficient conditions for uniform normal structure and therefore the fixed point property of a Banach space in terms of the James and von Neumann-Jordan type constants and the Ptolemy constant. Our main results of the paper significantly generalize and improve many known results in...
متن کاملLinear maps on von-Neumann algebras behaving like anti-derivations at orthogonal elements
This article has no abstract.
متن کامل